941 research outputs found

    Referenced Single-Molecule Measurements Differentiate between GPCR Oligomerization States.

    Get PDF
    The extent to which Rhodopsin family G-protein-coupled receptors (GPCRs) form invariant oligomers is contentious. Recent single-molecule fluorescence imaging studies mostly argue against the existence of constitutive receptor dimers and instead suggest that GPCRs only dimerize transiently, if at all. However, whether or not even transient dimers exist is not always clear due to difficulties in unambiguously distinguishing genuine interactions from chance colocalizations, particularly with respect to short-lived events. Previous single-molecule studies have depended critically on calculations of chance colocalization rates and/or comparison with unfixed control proteins whose diffusional behavior may or may not differ from that of the test receptor. Here, we describe a single-molecule imaging assay that 1) utilizes comparisons with well-characterized control proteins, i.e., the monomer CD86 and the homodimer CD28, and 2) relies on cell fixation to limit artifacts arising from differences in the distribution and diffusion of test proteins versus these controls. The improved assay reliably reports the stoichiometry of the Glutamate-family GPCR dimer, γ-amino butyric acid receptor b2, whereas two Rhodopsin-family GPCRs, β2-adrenergic receptor and mCannR2, exhibit colocalization levels comparable to those of CD86 monomers, strengthening the case against invariant GPCR oligomerization.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.bpj.2015.09.00

    Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis.

    Get PDF
    Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements

    Hepatitis B Virus Adaptation to the CD8+ T Cell Response: Consequences for Host and Pathogen

    Get PDF
    Chronic viral hepatitis infections are a major public health concern, with an estimated 290 million individuals infected with hepatitis B virus (HBV) globally. This virus has been a passenger in human populations for >30,000 years, and remains highly prevalent in some settings. In order for this endemic pathogen to persist, viral adaptation to host immune responses is pre-requisite. Here, we focus on the interplay between HBV infection and the CD8+ T cell response. We present the evidence that CD8+ T cells play an important role in control of chronic HBV infection and that the selective pressure imposed on HBV through evasion of these immune responses can potentially influence viral diversity, chronicity, and the outcome of infection, and highlight where there are gaps in current knowledge. Understanding the nature and mechanisms of HBV evolution and persistence could shed light on differential disease outcomes, including cirrhosis and hepatocellular carcinoma, and help reach the goal of global HBV elimination by guiding the design of new strategies, including vaccines and therapeutics

    Receptor Quaternary Organization Explains G Protein-Coupled Receptor Family Structure.

    Get PDF
    The organization of Rhodopsin-family G protein-coupled receptors (GPCRs) at the cell surface is controversial. Support both for and against the existence of dimers has been obtained in studies of mostly individual receptors. Here, we use a large-scale comparative study to examine the stoichiometric signatures of 60 receptors expressed by a single human cell line. Using bioluminescence resonance energy transfer- and single-molecule microscopy-based assays, we found that a relatively small fraction of Rhodopsin-family GPCRs behaved as dimers and that these receptors otherwise appear to be monomeric. Overall, the analysis predicted that fewer than 20% of ∼700 Rhodopsin-family receptors form dimers. The clustered distribution of the dimers in our sample and a striking correlation between receptor organization and GPCR family size that we also uncover each suggest that receptor stoichiometry might have profoundly influenced GPCR expansion and diversification

    A mechanistic model of tau amyloid aggregation based on direct observation of oligomers.

    Get PDF
    Protein aggregation plays a key role in neurodegenerative disease, giving rise to small oligomers that may become cytotoxic to cells. The fundamental microscopic reactions taking place during aggregation, and their rate constants, have been difficult to determine due to lack of suitable methods to identify and follow the low concentration of oligomers over time. Here we use single-molecule fluorescence to study the aggregation of the repeat domain of tau (K18), and two mutant forms linked with familial frontotemporal dementia, the deletion mutant ΔK280 and the point mutant P301L. Our kinetic analysis reveals that aggregation proceeds via monomeric assembly into small oligomers, and a subsequent slow structural conversion step before fibril formation. Using this approach, we have been able to quantitatively determine how these mutations alter the aggregation energy landscape.D.K. acknowledges funding from the Wellcome Trust (WT089703) and MRC. E.M. acknowledges funding from the Wellcome Trust (WT089703), DZNE and Max-Planck-Society. M.K. acknowledges fellowships from the Danish research council and the Lundbeck Foundation. N.S. and M.H.H acknowledge funding from the Augustus Newman foundation. G.A.G is funded by the Schiff Foundation. T.P.J.K acknowledges funding from the ERC, Augustus Newman Foundation and the BBSRC.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/ncomms802

    Characterizing Hepatitis C Virus–Specific CD4+ T Cells Following Viral‐Vectored Vaccination, Directly Acting Antivirals, and Spontaneous Viral Cure

    Get PDF
    BACKGROUND AND AIMS: Induction of functional helper CD4+ T cells is the hallmark of a protective immune response against hepatitis C virus (HCV), associated with spontaneous viral clearance. Heterologous prime/boost viral vectored vaccination has demonstrated induction of broad and polyfunctional HCV-specific CD8+ T cells in healthy volunteers; however, much less is known about CD4+ T-cell subsets following vaccination. APPROACH AND RESULTS: We analyzed HCV-specific CD4+ T-cell populations using major histocompatibility complex class II tetramers in volunteers undergoing HCV vaccination with recombinant HCV adenoviral/modified vaccinia Ankara viral vectors. Peptide-specific T-cell responses were tracked over time, and functional (proliferation and cytokine secretion) and phenotypic (cell surface and intranuclear) markers were assessed using flow cytometry. These were compared to CD4+ responses in 10 human leukocyte antigen-matched persons with HCV spontaneous resolution and 21 chronically infected patients treated with directly acting antiviral (DAA) therapy. Vaccination induced tetramer-positive CD4+ T cells that were highest 1-4 weeks after boosting (mean, 0.06%). Similar frequencies were obtained for those tracked following spontaneous resolution of disease (mean, 0.04%). In addition, the cell-surface phenotype (CD28, CD127) memory subset markers and intranuclear transcription factors, as well as functional capacity of peptide-specific CD4+ T-cell responses characterized after vaccination, are comparable to those following spontaneous viral resolution. In contrast, helper responses in chronic infection were infrequently detected and poorly functional and did not consistently recover following HCV cure. CONCLUSIONS: Helper CD4+ T-cell phenotype and function following HCV viral vectored vaccination resembles "protective memory" that is observed following spontaneous clearance of HCV. DAA cure does not promote resurrection of exhausted CD4+ T-cell memory in chronic infection

    Citrullination of HP1γ chromodomain affects association with chromatin.

    Get PDF
    BACKGROUND: Stem cell differentiation involves major chromatin reorganisation, heterochromatin formation and genomic relocalisation of structural proteins, including heterochromatin protein 1 gamma (HP1γ). As the principal reader of the repressive histone marks H3K9me2/3, HP1 plays a key role in numerous processes including heterochromatin formation and maintenance. RESULTS: We find that HP1γ is citrullinated in mouse embryonic stem cells (mESCs) and this diminishes when cells differentiate, indicating that it is a dynamically regulated post-translational modification during stem cell differentiation. Peptidylarginine deiminase 4, a known regulator of pluripotency, citrullinates HP1γ in vitro. This requires R38 and R39 within the HP1γ chromodomain, and the catalytic activity is enhanced by trimethylated H3K9 (H3K9me3) peptides. Mutation of R38 and R39, designed to mimic citrullination, affects HP1γ binding to H3K9me3-containing peptides. Using live-cell single-particle tracking, we demonstrate that R38 and R39 are important for HP1γ binding to chromatin in vivo. Furthermore, their mutation reduces the residence time of HP1γ on chromatin in differentiating mESCs. CONCLUSION: Citrullination is a novel post-translational modification of the structural heterochromatin protein HP1γ in mESCs that is dynamically regulated during mESC differentiation. The citrullinated residues lie within the HP1γ chromodomain and are important for H3K9me3 binding in vitro and chromatin association in vivo.Cancer Research UK (grant reference RG17001) Wellcome Trust (Core Grant reference WT203144) Cancer Research UK (grant reference C6946/A24843). Wellcome Trust (206291/Z/17/Z) Medical Research Council (MR/P019471/1 and MR/M010082/1). Royal Society Professorship (RP150066) Medical Research Council (MR/K015850/1

    Intracellular oligomeric amyloid-beta rapidly regulates GluA1 subunit of AMPA receptor in the hippocampus

    Get PDF
    The acute neurotoxicity of oligomeric forms of amyloid-beta 1-42 (Abeta) is implicated in the pathogenesis of Alzheimer's disease (AD). However, how these oligomers might first impair neuronal function at the onset of pathology is poorly understood. Here we have examined the underlying toxic effects caused by an increase in levels of intracellular Abeta, an event that could be important during the early stages of the disease. We show that oligomerised Abeta induces a rapid enhancement of AMPA receptor-mediated synaptic transmission (EPSCA) when applied intracellularly. This effect is dependent on postsynaptic Ca(2+) and PKA. Knockdown of GluA1, but not GluA2, prevents the effect, as does expression of a S845-phosphomutant of GluA1. Significantly, an inhibitor of Ca(2+)-permeable AMPARs (CP-AMPARs), IEM 1460, reverses the increase in the amplitude of EPSCA. These results suggest that a primary neuronal response to intracellular Abeta oligomers is the rapid synaptic insertion of CP-AMPARs
    corecore